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Uniform susceptibility of classical antiferromagnets in one
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Abstract. We simulated the field-dependent magnetization m(H,T ) and the uniform susceptibility χ(H,T )
of classical Heisenberg antiferromagnets in the chain and square-lattice geometry using Monte Carlo
methods. The results confirm the singular behavior of χ(H,T ) at small T,H: limT→0 limH→0 χ(H,T ) =
1/(2J0)(1− 1/D) and limH→0 limT→0 χ(H,T ) = 1/(2J0), where D = 3 is the number of spin components,
J0 = zJ , and z is the number of nearest neighbors. A good agreement is achieved in a wide range of
temperatures T and magnetic fields H with the first-order 1/D expansion results (D.A. Garanin, J. Stat.
Phys. 83, 907 (1996)).

PACS. 75.10.Hk Classical spin models – 75.50.Ee Antiferromagnetics – 75.40.Mg Numerical simulation
studies

In recent years, investigations of two-dimensional an-
tiferromagnets concentrated primarily on the quantum
model with S = 1/2. A practical reason for that is its
possible relevance for the high-temperature superconduc-
tivity. On the other hand, the identification with the quan-
tum nonlinear sigma model (QNLσM) in the low-energy
sector allowed using field-theory methods [1,2]. Although
the QNLσM results for the S = 1/2 model proved to be
in a good agreement with quantum Monte Carlo (QMC)
simulations (see, e.g., Ref. [3]), the requirement of low en-
ergies confines the validity region of the QNLσM to rather
low temperatures already for S ≥ 1. High-temperature se-
ries expansions (HTSE) for S ≥ 1 [4] and QMC simula-
tions [5] for S = 1 in the experimentally relevant temper-
ature range, as well as experiments on model substances
with 1 ≤ S ≤ 5/2, showed much better accord with
the pure-quantum self-consistent harmonic approximation
(PQSCHA) [6], than with the field-theoretical QNLσM
predictions. In contrast to the QNLσM, the PQSCHA
maps a quantum system on the corresponding classical
system on the lattice, which, in turn, can be studied by
classical MC simulations or other methods. The param-
eters of these classical Hamiltonians are renormalized by
quantum fluctuations and given by explicit analytical ex-
pressions.

The above arguments show that in most cases the clas-
sical model can be used as a good starting point for study-
ing quantum systems. In fact, most of nontrivial features
of two-dimensional antiferromagnets, such as impossibility
of ordering at nonzero temperatures in the isotropic case,
are universal and appear already at the classical level. The
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main theoretical problem is that due to Goldstone modes,
a simple spin-wave theory at T � JS2 is inapplicable to
two-dimensional magnets.

Despite their importance, classical antiferromagnets
received much less attention than the quantum S = 1/2
model. In particular, the initial uniform susceptibility
χ(T ) for the square lattice having a flat maximum at
T ∼ J has been simulated for S = 1/2 in references [7,3]
and for S = 1 in reference [5], but there are no results for
the classical model yet! For the latter, only the old MC
data for the energy [8] are available up to now.

On the other hand, classical magnets can be theoreti-
cally studied with the help of the 1/D expansion, where D
is the number of spin components [9–12]. In reference [11],
χ(T ) has been calculated for the square lattice and linear
chain to first order in 1/D for all temperatures, the solu-
tion interpolating between the exact result at T = 0 and
the leading terms of the HTSE at high temperatures. In
contrast, the low-energy approaches such as “Schwinger-
boson mean-field theory” [13] or “modified spin-wave the-
ory” [14] break down at T & J and fail to reproduce the
maximum of χ(T ). It should be noted that for quantum
magnets there is a method consisting in the expansion
in powers of 1/N where N is the number of flavors in
the Schwinger-boson technique [15]. This method, which
is nonequivalent to the 1/D expansion in the limit S →∞,
is supposed to work for all T , in contrast to the low-energy
QNLσM. Unfortunately, only the results for m(T,H) of
ferromagnets [15] are available.

The 1/D expansion also works in the situations with
nonzero magnetic field, which are not amenable to the
methods of references [13,14] imposing an external condi-
tion m = 0. An especially interesting issue is the singular
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behavior of χ(H,T ) for H,T → 0 for the square-lattice
and linear-chain models. For any H 6= 0, the spins with
lowering temperature come into a position nearly per-
pendicular to the field, thus limH→0 limT→0 χ(H,T ) =
1/(2J0), where J0 is the zero Fourier transform of the
exchange interaction, J0 = zJ , z is the number of near-
est neighbors. This value coincides with the susceptibility
of the three-dimensional classical antiferromagnets on bi-
partite lattices in the direction transverse to the spon-
taneous magnetization. For H = 0, the spins assume
all directions, including that along the infinitesimal field,
for which the susceptibility tends to zero at T → 0.
Thus limT→0 limH→0 χ(H,T ) = 1/(2J0)(1 − 1/D). One
can see that the difference between these two results is
captured exactly in the first order in 1/D. According to
reference [12], for any H 6= 0 with lowering tempera-
ture χ(H,T ) increases, goes through the flat maximum,
decreases, attains a minimum and then goes up to the
limiting value 1/(2J0).

The existence of the interesting features described
above, which should be also pertinent to quantum anti-
ferromagnets, have never been checked numerically. That
is why we have undertaken MC simulations for clas-
sical antiferromagnets in square-lattice and linear-chain
geometries.

Our systems are defined by a classical Heisenberg
Hamiltonian

H = −H
∑
i

Si +
1
2

∑
ij

JijSiSj (1)

where S is a D-component normalized vector of unit
length (|S| = 1), H is a magnetic field and the exchange
coupling Jij is J > 0 for nearest neighbors and zero oth-
erwise. The mean-field transition temperature is given by
TMFA

c = J0/D = zJ/D. Although there is no phase tran-
sition in our model, it is convenient to choose TMFA

c as the
energy scale and to introduce dimensionless temperature,
magnetic field, and susceptibilities

θ ≡ T/TMFA
c , h ≡ H/J0, χ̃α ≡ J0χα, (2)

where χα ≡ ∂〈Sα〉/∂Hα and α = x, y, z.
In the limit D→∞, the model equation (1) is exactly

solvable and equivalent to the spherical model. The so-
lution includes an integral over the Brillouin zone taking
into account spin-wave effects in a nonperturbative way.
The latter leads to the absence of the phase transition for
the spatial dimensionalities d ≤ 2.

The 1/D corrections to the spherical-model solution
have been obtained in references [9–12]. They include dou-
ble integrals over the Brillouin zone and are responsible
for the maximum of the antiferromagnetic susceptibility
at θ ∼ 1 [11]. For small fields and temperatures, h, θ� 1,
the field-induced magnetization m for the square-lattice
model simplifies to

m ∼=
h

2

[
1− 1

D
+

θ

πD
ln
(

1 +
h2

16
eπ/θ

)
+
θ

D

]
, (3)

which follows from equations (4.9) and (2.23) of
reference [12]. The log term of the above expression is
responsible for the singularity of both transverse and lon-
gitudinal (with respect to the field) susceptibilities,

χ̃⊥ ≡ m/h, χ̃‖ ≡ ∂m/∂h, (4)

which was mentioned above. For h = 0 they have the
form χ̃ ∼= [1 − 1/D + θ/D]/2, whereas for h 6= 0 the lim-
iting value at θ = 0 and the slope with respect to θ are
different: χ̃ ∼= {1 − [θ/(πD)] ln[16/(eπh2)]}/2. In the lat-
ter case, χ has a minimum at θ ∼= θ∗ = π/ ln(16/h2).
There are corrections of order θ2 and 1/D2 to
equation (3). The latter renormalize the last, regular term
in equation (3) (see Eq. (8.2) of Ref. [11]). The 1/D2

corrections cannot, however, appear in the log term of
equation (3), because this would violate the general prop-
erties of χ(H,T ) discussed above.

For the linear chain, the magnetization in the region
h, θ� 1 to first order in 1/D is given by [12]

m ∼= h

2

[
1− θ

D
√
h2 + θ2

+
θ

D
+O(θ2)

]
. (5)

The transverse susceptibility of the linear chain behaves
qualitatively similarly to that of the square lattice. The
minimum of χ⊥ is attained at θ = h2/3 which is smaller
than in two dimensions. The longitudinal susceptibility
χ‖ corresponding to equation (5) has a minimum at θ ∼=
31/3h2/3 � h and a maximum at θ ∼= 3−1/2h3/2 � h.

For comparison, the zero-field Takahashi’s results [14]
for the Heisenberg model on the linear chain and square
lattice can for θ � 1 be rewritten in the form [11]

χ̃ ∼= 1
3

{
[1− θ/3]−1, d = 1

2
[
1 +

√
1− 4θ/3

]−1

, d = 2,
(6)

where the exponentially small terms are neglected. For
both lattices the low-temperature expansion is the same to
order θ: χ̃ = (1/3)+(1/9)θ+ ..., and the results diverge at
θ ∼ 1. The coefficient in front of θ here is at variance with
the 1/D-expansion results above for D = 3. It was argued
in reference [11] that the correct general-D form of the
low-temperature expansion of the zero-field susceptibility
for both square lattice and the linear chain reads

χ̃ =
1
2

(
1− 1

D

)
+

1
2D

(
1− 1

D

)
θ +O(θ2), (7)

i.e., it is reproduced to order θ at the second order of the
1/D expansion. This formula is in accord with Takahashi’s
theory.

In order to check the validity of the analytic results
from the 1/D expansion above for the most realistic case
of D = 3, we performed Monte Carlo simulation for three-
component classical spins on a chain with length N as well
as on a square lattice of size N = L× L, both with peri-
odic boundary conditions. In our Monte Carlo procedure,
a spin is chosen randomly and a trial step is made where
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Fig. 1. Temperature dependence of the longitudinal and transverse susceptibility for the square lattice for different values of
the magnetic field h. The points are results from Monte Carlo simulations for L = 64 and h = 0, 0.1, and 1. The solid lines are
theoretical results of the first order in 1/D for D = 3 [12]. The dotted line represents the Takahashi’s theory (see Eq. (6)). The
dotted line is the susceptibility in the mean field approximation (MFA) in zero field.

the new spin direction is taken randomly with equal distri-
bution on the unit sphere. This trial step does not depend
on the initial spin direction. The energy change of the
system is computed according to equation (1) and is ac-
cepted with the heat-bath probability. One sweep through
the lattice and performing the procedure described above
once per spin (on average) is called one Monte Carlo step
(MCS). We start our simulation at high temperature and
cool the system stepwise. For each temperature we wait
6 000 MCS (chain) and 4 000 MCS (square lattice), respec-
tively, in order to reach equilibrium. After thermalization
we compute thermal averages 〈. . . 〉 for the next 8 000 MCS
(chain) and 6 000 MCS (square lattice), respectively.

The relevant quantities we are interested in are the
magnetization m ≡ mz = 〈Mz〉 and the components of
the susceptibility χα = N

T (〈M2
α〉 − 〈Mα〉2), where the z

axis is directed along H, α = x, y, z, and Mα ≡ 1
N

∑
i S

α
i .

We have used the formula above for χα to simulate the
zero-field and longitudinal susceptibility, χ‖ ≡ χz . For the
transverse susceptibility, χ⊥ ≡ χx = χy, at nonzero field
it is more convenient to use equation (4). For h = 0 the
transverse and longitudinal susceptibilities are identical
and calculated as χ⊥ = χ‖ = (χx + χy + χz)/3.

With intent to minimize the statistical error and to be
able to compute error bars we take averages overNr = 100
independent Monte Carlo runs. The error bars we show are
the mean errors of the averages σ/

√
Nr, where σ is the

standard deviation of the distribution of thermal averages
following from the independent runs.

We start with the comparison of theoretical results of
the first order in 1/D for D = 3 [12] and the present
numerical results for the square lattice. Figure 1 shows
the temperature dependence of the reduced longitudinal
susceptibility χ̃‖ and reduced transverse susceptibility χ̃⊥
for different values of the magnetic field, both for the sys-
tem size L = 64. The corresponding results for the spin
chain with system size L = 100 are presented in Figure 2.

We investigated possible finite-size effects by varying
the lattice size. However, we did not find any signifi-
cant change of our data for lattice sizes in the range
L = 16 . . . 64 (square lattice) and L = 40 . . .100 (linear
chain). Also, we did not find any systematic change of our
results for longer Monte Carlo runs so that we believe to
present data corresponding to thermal equilibrium.

Note, that for all Monte Carlo data shown the error
bars of the transverse susceptibility are smaller than those
of the longitudinal one since the transverse susceptibility
follows directly from the z component of the magnetiza-
tion while the longitudinal susceptibility is calculated from
the fluctuations of the z component of the magnetization.
In the case h = 0 the transverse and longitudinal suscep-
tibility are identical and follow from fluctuations of the
magnetization so that the error bars are larger.

For the square lattice as well as for the chain the nu-
merical data confirm the non-analytic behavior of χ in
the limit of temperature T → 0, i.e. the limiting values
χ̃⊥ = χ̃‖ = 1/2 for h 6= 0 and χ̃⊥ = χ̃‖ = 1/3 for h = 0.

Especially for the square lattice, the Monte Carlo data
agree reasonable with the first-order 1/D expansion in
the whole range of temperatures. On the other hand, at
low temperatures the agreement with Takahashi’s theory
within error bars is achieved. Our numerical data thus
confirm that the coefficient in the linear-θ term in χ in
Takahashi’s theory is accurate. For h = 1 and θ & 1,
the MC data fall slightly below the 1/D-expansion curve.
Both are again in accord with each other for θ & 3 (not
shown).

The maximum of the longitudinal susceptibility of the
square-lattice model for h = 1 looks much sharper than
that of the theoretical curve. This feature, as well as the
hump on the h = 0.1 curve at slightly lower tempera-
ture, are possible indications of the Berezinsky-Kosterlitz-
Thouless (BKT) transition. The reason for that is an ef-
fective reduction of the number of spin components by one
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Fig. 2. Temperature dependence of the longitudinal and transverse susceptibility for the chain for different values of the
magnetic field. The points are results from Monte Carlo simulations for L = 100 and h = 0, 0.1, 0.3, and 1. The solid lines are
theoretical results of the first order in 1/D for D = 3 [12]. The dotted line represents the Takahashi’s theory (see Eq. (6)).

at sufficiently low temperatures in the magnetic field (the
effect mentioned in the introduction), so that the Heisen-
berg model becomes effectively D = 2 and it can undergo
a BKT transition in two dimensions. We have not, how-
ever, studied this point in detail in this work.

For the antiferromagnetic chain our MC simula-
tion data are in a qualitative agreement with the
1/D expansion, although the discrepancies are stronger.

Unfortunately, we could also not perform simulations
for even lower values of the field h for the following reason:
The singular behavior of χ stems from the fact that for
h > 0 the spins tend to come into a position perpendic-
ular to the field. For fields as small as h = 0.01 (curve 4
in Figs. 1 and 2) the amount of energy related to this
ordering field is 100 times smaller than the exchange in-
teraction energy. Therefore the corresponding relaxation
for this energetically favorable state takes very long in a
Monte Carlo simulation, especially for these low temper-
atures, where this effect occurs for low fields.

Our MC simulations showed for the first time the sin-
gular behavior of the susceptibility of classical antifer-
romagnets at low temperature and magnetic fields. The
results are in accord with predictions based on the first-
order 1/D expansion [11,12]. It would be interesting to
try deriving the corresponding low-temperature results
(cf. Eqs. (3) and (5)) without using the 1/D expansion.
One of the formulas of this type already exists: It is
equation (7). A candidate among theoretical approaches
is the chiral perturbation theory of reference [2], which is
applicable to quantum models, as well.

The features manifested here by classical antifer-
romagnets should be pertinent to quantum models, as
well. The effects observed here could be checked with the
help of the QMC simulations which achieved recently a
substantial accuracy (see, e.g., Refs. [3,5]). Another possi-
bility is to map the quantum model on the classical one [6]
and to perform classical MC simulations. One should also

mention an alternative way of mapping of quantum mag-
netic Hamiltonians on classical ones with the help of the
coherent-state cumulant expansion [16,17], which is a rig-
orous expansion in powers of 1/S.
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